

mTOR signaling in renal fibrosis: potential of novel therapeutic agents

Chunsun Dai, MD/PhD

Center for Kidney Diseases, 2nd Affiliated Hospital,

Nanjing Medical University

MTOR forming two complexes: mTORC1 and mTORC2

MTOR signaling pathways

Origins and activation of myofibroblasts in the kidney

Nature Medicine 19: 964–966 (2013)

- Rheb/mTORC1 signaling activation promotes fibroblast activation and kidney fibrosis
- Rictor/mTORC2 signaling activation mediates TGFβ1 induced fibroblast activation and kidney fibrosis
- Targeting mTOR signaling in protecting against renal fibrosis

TGF-β1 upregulates Rheb expression in NRK-49F cells

TGF-β1 stimulates Rheb activation in NRK-49F cells

в

Down regulating Rheb expression inhibits TGFβ1stimulated mTORC1 signaling and NRK-49F cell activation

Rheb/mTORC1 signaling is activated in kidneys with UUO nephropathy

Rheb/mTORC1 is activated in myofibroblasts from the fibrotic kidneys

Rheb transgenic mice exhibit focal kidney interstitial fibrosis

Tsc1/2 regulates Rheb activity

mTORC1 is activated in the kidney fibroblasts from Fibro-TSC1-/- mice

Fibro-TSC1-/- mice exhibit focal kidney interstitial fibrosis

- TGFβ1 treatment stimulates Rheb/mTORC1 signaling activation in cultured kidney fibroblasts.
- Activation of Rheb/mTORC1 in fibroblasts induces focal kidney intestitial fibrosis in mice.

- Rheb/mTORC1 signaling activation promotes fibroblast activation and kidney fibrosis
- Rictor/mTORC2 signaling activation mediates TGFβ1 induced fibroblast activation and kidney fibrosis
- Targeting mTOR signaling in protecting against renal fibrosis

TGFβ1 induces Rictor/mTORC2 signaling activation in NRK-49F cells

Knocking down Rictor expression diminishes TGFβ1-Induced Akt phosphorylation and fibroblast activation

Kidney Int. 2015 Sep;88(3):515-27.

Knocking down Akt diminishes TGFβ1-induced fibroblast activation

Kidney Int. 2015 Sep;88(3):515-27.

Activation of Rictor/mTORC2 signaling in the myofibroblasts in fibrotic kidneys

Kidney Int. 2015 Sep;88(3):515-27.

Generating the mice with fibroblast-specific ablation of Rictor

Specific deletion of Rictor in fibroblasts ameliorates kidney interstitial fibrosis in mice with UUO nephropathy

Deletion of Rictor in fibroblasts diminishes FN and α -SMA expression in the UUO kidneys

Induced deletion of Rictor in fibroblasts ameliorates UUO nephropathy in mice

- TGFβ1 treatment stimulates Rictor/mTORC2 signaling activation in cultured kidney fibroblasts.
- Blockade of Rictor/mTORC2 inhibits fibroblast activation and kidney fibrosis in mice with UUO nephropathy.

- Rheb/mTORC1 signaling activation promotes fibroblast activation and kidney fibrosis
- Rictor/mTORC2 signaling activation mediates TGFβ1 induced fibroblast activation and kidney fibrosis
- Targeting mTOR signaling in protecting against kidney fibrosis

PP242 inhibits TGFβ1-stimulated mTOR signaling activation in NRK-49F cells

PP242 ameliorates TGFβ1-imduced fibroblast activation

PP242 alleviates UUO nephropathy in mice

Unpublished data

Quercetin inhibits mTOR and β -catenin but not Smad3 signaling activation stimulated by TGFb1 in NRK-49F cells

Quercetin diminishes TGFβ1-induced NRK-49F cell activation

Quercetin ameliorates UUO nephropathy in mice

- Both mTORC1 and mTORC2 are involved in TGFβ1-induced fibroblast activation and kidney fibrosis.
- Targeting mTORC1 and mTORC2 signaling pathways may provide a new therapeutic strategy for protecting against kidney fibrosis.

Acknowledgements

- Junwei Yang, MD/PhD
- Lei Jiang, MD/PhD
- Jianzhong Li, MD
- Jiafa Ren, MD
- Ye Feng, MD
- Junhua Mao, MS
- Xin Liu, MS
- Yuan Gui, MS

- "973" Research Program of National Basic Research Program of China
- Grant of National Science
 - Foundation of China
- Grant of Science Foundation of
 - **Jiangsu Province**

Thank you !

天

7.

1